East Tarboro Canal Stream Restoration Project Edgecombe County North Carolina

CU: 03020103 SCO# 030603101 EEP Project No. 123

Year 1 Monitoring Report January 22, 2009

Prepared for:

North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Parker Lincoln Building 2728 Capital Boulevard, Suite 1H-103 Raleigh, NC 27606

East Tarboro Canal Stream Restoration Project Edgecombe County North Carolina

CU: 03020103 SCO# 030603101 EEP Project No. 123

Year 1 Monitoring Report January 22, 2009

Prepared by:

Rummel, Klepper & Kahl, LLP 900 Ridgefield Drive Suite 350 Raleigh, NC 27609

EXECUTIVE SUMMARY

The project site consists of two reaches along East Tarboro Canal which is located in Tarboro, North Carolina in Edgecombe County (**Figure 1**). This stream is a tributary of the Tar River. Reach 1 begins downstream of Forest Acres Drive and flows for approximately 1,900 feet. Reach 2 begins downstream of Martin Luther King Jr. Drive and continues downstream for approximately 2,900 linear feet to St. James St. The project is located primarily on town of Tarboro and the Edgecombe County Board of Education properties.

Prior to restoration East Tarboro Canal was a relatively straight stream with high banks and areas of severe bank erosion. There was a lack of streambank vegetation due to the fact that the Town of Tarboro routinely maintained the channel to provide flood control. Both reaches of the channel were classified as G5c before restoration.

Reach 1 was modified to improve the bedform and increase the vegetation on the streambanks. Two roads present on either side of the stream restricted pattern adjustment. However, bankfull benches and grading of the slope were performed to improve the stream's dimensional characteristics. Reach 1 is classified as Enhancement Level 1 because the profile and dimension were modified in addition to planting a narrow riparian buffer. Vegetation was used to provide stability and provide habitat along the streambanks and in the riparian area. Vegetation planted consisted of low growing shrubs and herbaceous vegetation because of the limited width of the buffer, adjacent landowner concerns, and sight constraints for traffic. Reach 2 was modified to produce a C-type channel by reintroducing meanders and providing a floodplain at a lower level than the original floodplain. Reach 2 was classified as a Priority 2 restoration because the stream was not raised sufficiently to access its original floodplain. Rock vanes and sills were used to control grade and provide enhanced bedform features. Vegetation was used to provide stability and provide habitat along the streambanks and in the floodplain area. Vegetation planted consisted of trees, shrubs and herbaceous vegetation.

Year 1 monitoring site visits were completed on October 13, 2008, October 14, 2008, and November 10, 2008. Year 1 vegetation monitoring was completed using the Carolina Vegetation Survey (CVS) – EEP protocol Level 1 (Version 4.1). Nine (9) of the thirteen (13) vegetation plots met vegetative success and the site is currently exceeding the criteria of 320 stems per acre. Even though the site has met success criteria, a number of trees across the site have died. North Carolina sustained a prolonged period of drought that continues to cause stress to vegetation.

During the geomorphic assessment, some parts of Reach 1 were dry. There also has been mowing activity within riparian area destroying many of the planted seedlings. Reach 2 is overgrown with vegetation in many areas suggesting that there is not a consistent flow of water. The lack of flow is likely due to the drought. Overall the stream reaches at East Tarboro Canal are stable and are showing few signs of instability. Reach 2 has a structure failure that requires immediate attention. The amount of structure in failure is fifty (50) linear feet.

2008 represents the first of a five year monitoring plan for the East Tarboro Stream Restoration Site. Overall, the site is performing adequately and meets or exceeds the minimum success requirements for monitoring.

Table of Contents

Executive Summary	i
1.0 Project Background	1
1.1 Project Objectives	
1.2 Project Structure	
1.3 Location and Setting	
1.4 Project History and Background	5
1.5 Monitoring Plan View	6
2.0 Project Condition and Monitoring Results	
2.1 Vegetation Assessment	13
2.1.1 Vegetation Problem Areas	
2.1.2 Vegetation Problem Area Plan View	13
2.2 Stream Assessment	13
2.2.1 Hydrology	13
2.2.2 Bank Stability	
2.2.3 Stream Problem Areas	
2.2.4 Stream Problem Area Plan View	14
2.2.5 Stability Assessment	15
2.2.6 Quantitative Measures Summary	17
3.0 References	22

- Appendix A. Vegetation Raw Data Appendix B. Geomorphologic Raw Data Appendix C. Wetland Data (N/A) Appendix D. Integrated Problem Area Plan Views

1.0 Project Background

1.1 PROJECT OBJECTIVES

Project goals and objectives for the East Tarboro Canal stream restoration project included:

The project had the following objectives:

- Enhance over 1,800 linear feet of stream on East Tarboro Canal along Reach 1 and restore approximately 2,900 linear feet of East Tarboro Canal along Reach 2.
- Create a limited floodplain for East Tarboro Canal below its natural floodplain to allow access during flood events (Reach 1).
- Construct a new floodplain at a lower elevation (Reach 2).

While project goals included:

- Provide a stable stream channel that neither aggrades nor degrades while maintaining its dimension, pattern, and profile with the capacity to transport its watershed's water and sediment load.
- Improve water quality and reduce erosion.
- Improve aquatic habitat with the use of natural material stabilization structures such as root wads, rock vanes, woody debris, and a riparian buffer.
- Provide a native stream buffer that will increase bank stability, improve wildlife habitat, and eliminate or reduce exotic invasive plant infestations and increase the aesthetic value by transforming the unvegetated ditch into a function stream buffer.

1.2 PROJECT STRUCTURE

The East Tarboro Canal is a Federal Emergency Management Agency (FEMA) regulated stream with a detailed study. Stream restoration areas are located within a zone AE flood hazard area. Zone AE indicates areas inundated by the 100-year recurrence storm event. Stream restoration lowered the floodplain and will lower flood elevations throughout the reach. During Hurricane Floyd, most of the structures located in the floodplain received substantial damage and were raised. The majority of these properties were purchased by FEMA and as a result, the property in the 100-year floodplain is generally structure-free and town-owned. Currently 49% of the watershed remains agricultural or undeveloped. This land has the potential for development due to its proximity to the main Town of Tarboro. Prior to restoration the channel was incised and areas of severe bank erosion were located throughout both project reaches due to the high in-stream shear stress and lack of streambank vegetation.

East Tarboro Canal enters Reach 1 as a first-order stream and remains first order the entire reach. One additional stream enters East Tarboro Canal upstream of Reach 2 and a second tributary empties into Reach 2 near the start of the reach. Reach 2 begins as a 2nd order stream and becomes a third-order stream immediately downstream from the beginning of the reach. It remains a third order stream before emptying into the Tar River.

The Enhancement of Reach 1 and Priority 2 stream restoration of the Reach 2 of the main channel involved adjusting the dimension, pattern, and profile to allow the stream to more fully transport its water and sediment load. In addition In addition to planting, dimension and profile were altered on Reach 1. Dimensional alterations consisted of cutting a left bench to increase flood storage area and allow for sediment aggradation. Structures were installed on the bed of the channel to prevent further incision. A

combination of bedform transformations, channel dimension adjustments, pattern alterations, and structure installations were used to accomplish a Priority 2 stream restoration of Reach 2. The natural meander patterns were restored and rock grade control vanes and rootwads were incorporated for aquatic habitat enhancement and bed and bank stability. A riparian buffer was planted along both reaches in February 2007.

Exhibit Table 1. Project Restoration Components East Tarboro Canal Stream Mitigation Site EEP Project No: 123								
Project Segment/Reach IDMitigation TypeApproachLinear FootageStationingComment								
Reach 1	Enhancement 1	N/A	1,869	10+00 to 28+69	Instream structures and vegetated buffers			
Reach 2	Instream structures ap							

1.3 LOCATION AND SETTING

The project site consists of two reaches along East Tarboro Canal which is located in Tarboro, North Carolina in Edgecombe County (**Figure 1**). This stream is a tributary of the Tar River. Reach 1 begins downstream of Forest Acres Drive and flows for approximately 1,900 feet. Reach 2 begins downstream of Martin Luther King Jr. Drive and continues downstream for approximately 2,900 linear feet to St. James St. The project is located primarily on town of Tarboro and the Edgecombe County Board of Education properties.

Source: USGS Quadrangle, Tarboro, NC

1.4 PROJECT HISTORY AND BACKGROUND

Exhibit Table II. Project Activity and Reporting History East Tarboro Canal Stream Restoration - EEP Project No. 123					
Activity or Report	Data Collection Complete	Actual Completion or Delivery			
Restoration Plan	NA	January 2005			
Final Design - 90%	NA	May 2005			
Construction	Jan 2007	February 2007			
Temporary S&E mix applied to entire project area	Jan 2007	Jan 2007			
Permanent seed mix applied to entire project area	Jan 2007	Jan 2007			
Containerized and B&B plantings	Jan 2007	Jan 2007			
Mitigation Plan / As-built (Year 0 Monitoring - baseline)	April 2007	June 2007			
Year 1 Monitoring	Nov 2008	NA			
Year 2 Monitoring	NA	NA			
Year 3 Monitoring	NA	NA			
Year 4 Monitoring	NA	NA			
Year 5 Monitoring	NA	NA			

Exhibit Table III. Project Component Table					
East Tarboro Cana	East Tarboro Canal Stream Restoration - EEP Project No. 123				
Designer	Earth Tech				
	701 Corporate Center Drive				
	Suite 475				
Primary project design POC	Raleigh, NC 27607				
Construction Contractor	Shamrock Environmental Corporation				
	P.O. Box 14987				
	Greensboro, NC 27415				
Construction contractor POC	Mike Granson (336)-375-1989				
Planting Contractor	Shamrock Environmental Corporation				
	P.O. Box 14987				
	Greensboro, NC 27415				
Planting Contractor POC	Mike Granson (336)-375-1989				
Seeding Contractor	Shamrock Environmental Corporation				
	P.O. Box 14987				
	Greensboro, NC 27415				
Seeding Contractor POC	Mike Granson (336)-375-1989				
Seed Mix Sources	contact Shamrock Environmental Corporation				
	Mellow Marsh Farm				
	1312 Woody Store Road				
	Siler City, NC 27344				
Nursery Stock Suppliers	(919) 742-1200				
Monitoring Performers (Year 1)	Rummel, Klepper, and Kahl, LLP				
	900 Ridgefield Drive Suite 250				
	Raleigh, NC 27609				
Stream Monitoring POC	Pete Stafford (919)878-9560				
Vegetation Monitoring POC	Pete Stafford (919)878-9560				
Wetland Monitoring POC	NA				

Exhibit Table IV. Project Background Table East Tarboro Canal Restoration Site - EEP Project No. 123			
Project County	Edgecombe		
Drainage Area	2.78 sq mi		
Drainage impervious cover estimate (%)	10 percent		
Stream Order	1 st /2nd		
Physiographic Region	Coastal Plain		
Ecoregion	Southeastern Floodplains and Low Terraces		
Rosgen Classification of As-built	Reach 1 –NA, Reach 2 – C5		
Cowardin Classification	Riverine		
Dominant soil types	Grantham-Urban land complex		
	Portsmouth fine sandy loam		
	Roanoke Loam		
Reference site ID	UT to Mill Creek		
USGS HUC for Project	03020103		
USGS HUC for Reference	Unnamed tributary to Mill Creek (03020201)		
NCDWQ Subbasin for Project	030303		
NCDWQ Subbasin for Reference	Unnamed tributary to Mill Creek (030404)		
NCDWQ Classification for Project	East Tarboro Canal (C, NSW)		
NCDWQ Classification for Reference	Unnamed tributary to Mill Creek (C, NSW)		
Any portion of any project segment 303d listed?	No		
Any portion of any project segment upstream of a 303d listed			
segment?	No		
Reasons for 303d listing or stressor	N/A		
Percent of project easement fenced	0%		

1.5 MONITORING PLAN VIEW

See the following as-built drawings for the Monitoring Plan Views.

Pin	Northing	Easting			
XC1LPIN	789958	2434466			
XC1RPIN	789922.8	2434431			
XC2LPIN	789587.4	2434855			
XC2RPIN	789552	2434820			
NAD 1983 NC State Plane Feet					

	/			
Northing	Easting			
789294.3	2435053			
789274.2	2435008			
789175.1	2435115			
789152.4	2435071			
788784.7	2435314			
788758.1	2435261			
NAD 1983 NC State Plane Feet				
	789294.3 789274.2 789175.1 789152.4 788784.7 788758.1			

Pin	Northing	Easting		
XS6LPIN	788640.3	2437904		
XS6RPIN	788725.1	2437851		
XS7LPIN	788375.2	2437826		
XS7RPIN	788360	2437727		
XS8LPIN	788191.3	2437894		
XS8RPIN	788199.8	2437819		
NAD 1983 NC State Plane Feet				

Pin	Northing	Easting			
XS9LPIN	787750.5	2437837			
XS9RPIN	787742.6	2437736			
XS10LPIN	787532.4	2437804			
XS10RPIN	787602.8	2437733			
XS11LPIN	787299.8	2437627			
XS11RPIN	787360.4	2437548			
XS12LPIN	787017.1	2437495			
XS12RPIN	787051.2	2437401			
XS13LPIN	786776.9	2437396			
XS13RPIN	786763.5	2437298			
NAD 1983 NC State Plane Feet					

2.0 Project Condition and Monitoring Results

2.1 VEGETATION ASSESSMENT

Vegetative sample plots were quantitatively monitored during the first growing season. One (1) 100m2 plot was established for Reach 1 and twelve (12) 100m2 plots were established for Reach 2 for a total of thirteen (13) plots. Species composition, density, vigor and survival were monitored. Each plot corner is permanently located with rebar. On November 10, 2008, year 1 vegetation monitoring was completed using the Carolina Vegetation Survey (CVS) – EEP protocol Level 1 (version 4.1). Baseline data provided was not completed utilizing the CVS-EEP protocol, therefore some data will be skewed.

As per the mitigation plan, the vegetative success criteria are based on the US Army Corps of Engineers Stream Mitigation Guidelines (USACE, 2003). The final vegetative success criteria will be the survival of 260 5-year old planted woody stems per acre at the end of the year 5 monitoring period. An interim measure of vegetation planting success will be the survival of at least 320 3-year old planted woody stems per acre at the end of 13 vegetation plots meet or exceed the minimum success requirements. Additional vegetative problems include:

- Areas outside of the planted vegetation plots exhibit vegetation mortality
- Exotic species within the stream channel
- Mowing of planted stems in Reach 1

The Year 1 stem counts within each of the vegetative monitoring plots are included in Exhibit Tables A1 through A5 in Appendix A.

2.1.1 Vegetation Problem Areas

Even though the site has met vegetative success criteria, a number of trees across the site have died. North Carolina has been in a drought this year contributing to much of the vegetation failure along with the small caliper size of the bare root seedlings.

2.1.2 Vegetation Problem Area Plan View

Vegetation problem areas are shown on the Integrated Plan View map in Appendix D.

2.2 STREAM ASSESSMENT

2.2.1 Hydrology

As per the project scope, RK&K did not measure flows with peak stage recorders. However, during the most recent field visit, racklines were observed and photographed (Appendix B.4 Photo 12). A crest gauge will be installed on Reach 2 during 2009 to monitor flow activity.

Exhibit Table V. Verification of Bankfull Events						
East	East Tarboro Canal Stream Restoration Site - EEP Project No. 123					
Date of Data Collection	Date of Data Collection Date of Occurrence Method Photo					
November 10, 2008October/November 2008Visual ObservationAppendix B.4 Photo 12						

2.2.2 Bank Stability

According to the NCEEP guidelines for monitoring, bank stability assessments will be performed during year 5 monitoring. Bank stability will be assessed using the near bank stress (NBS) assessment and bank erodibility hazard index (BEHI).

Exhibit Table VI. BEHI and Sediment Export Estimates East Tarboro Canal Stream Restoration Project - EEP Project No. 123

Bank stability will be assessed in monitoring Year 5

2.2.3 Stream Problem Areas

Overall the stream reaches at East Tarboro Canal are stable and are showing few signs of instability. Reach 2 has a structure that is in need of immediate attention. Photos and location of these areas are shown in Appendix D Current Conditions Plan View. As discussed above, there are some vegetation issues throughout the site. These issues are most likely being compounded by the persistent drought the project site has experienced during 2007 and 2008 growing seasons. A review of NC Climate office data revealed that Edgecombe County experienced a moderate to severe drought from June of 2007 until November of 2008. During this time period, the rainfall totals were approximately fifteen inches below normal amounts.

The channel is overgrown with vegetation in many areas suggesting that there is not a consistent flow of water in the channel and also an occurrence of an exotic species (*Murdannia keisak*). The identity of the exotic species can not be confirmed because it had died off due to frost during the assessment (Appendix B.4 Photo 7). The lack of flow is likely due to the extreme drought during the 2007 and 2008 growing seasons. A detailed table and photos can be found in Appendix B. Current problem areas are:

- Rock Vein Structure Failure at Station 21+50
- Invasive and exotic vegetation found throughout the stream channel of Reach 2

RK&K recommends that the rock vein at station 21+50 (Photo B.3 SP3) be removed and replaced immediately to prevent more damage to the stream in this area. It is also recommended that all exotic species found within the stream channel be treated with herbicide.

2.2.4 Stream Problem Area Plan View

Stream problem areas are shown on the Integrated Current Condition Area Plan View in Appendix D.

2.2.5 Stability Assessment

Exhibit Table VII-A. Categorical Stream Feature Visual Stability Assessment						
East Tarboro Canal Stream Restoration Site/EEP Project No. 123						
		Reach 1				
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	100%	100%				
B. Pools	100%	100%				
C. Thalweg	NA	NA				
D. Meanders	100%	100%				
E. Bed General	100%	100%				
F. Bank Condition	100%	100%				
G. Vanes/J Hooks, etc.	100%	100%				
H. Wads and Boulders	NA	NA				

Exhibit Table VII-B. Categorical Stream Feature Visual Stability Assessment East Tarboro Canal Stream Restoration Site/EEP Project No. 123						
		Reach 2		- J		
Feature	Initial	MY-01	MY-02	MY-03	MY-04	MY-05
A. Riffles	100%	96%				
B. Pools	100%	98%				
C. Thalweg	NA	NA				
D. Meanders	100%	100%				
E. Bed General	100%	100%				
F. Bank Condition	100%	95%				
G. Vanes/J Hooks, etc.	100%	95%				
H. Wads and Boulders	100%	95%				

	Exhibit Table VIII. Baseline Morphology and Hydraulics Summary East Tarboro Canal Stream Restoration Site - EEP Project No. 123 Reach 1 (1869 feet)																	
												•J••						
Parameter	US	GS G Data	age		ional (Interv	Curve al	Pr	e-Exis Conditi	ting	Pro	ject Stı Referen			Desig	n		As-Buil	t
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)						10.12	7.3	9.8	7.3	10.8	11	10.9	Na	Na	12	10.26	11.63	11.12
Flood Prone Width (ft)						12.53	10.1	14.7	12.3	8.3	9.6	9	Na	Na	12	12.05	17.13	14.82
BF Cross Sectional Area (SF)						1.21	1.23	2.02	1.5	0.77	0.87	0.80	Na	Na	1	1.09	1.55	1.33
BF Mean Depth (ft)						Na	1.54	2.92	2	1.24	1.45	1.34	Na	Na	1.6	1.7	2.85	2.13
BF Max Depth (ft)						Na	3.6	8	5.6	12.6	14.1	13.4	Na	Na	12	7.14	10.13	8.47
Width/Depth Ratio						Na	1.3	2.9	NA	9.1	9.3	Na	Na	Na	2.2	1.88	2.43	2.15
Entrenchment Ratio						Na	12.4	14.1	12.8	Na	Na	Na	Na	Na	Na	11.5	13.3	12.48
Bank Height Ratio						Na	0.79	0.97	1.04	Na	Na	Na	Na	Na	Na	1.03	1.25	1.18
Wetted Perimeter (ft)																		
Hydraulic Radius (ft)																		
Pattern Channel																		
Beltwidth (ft)									Na	12.5	25	18.8	Na	Na	Na			Na
Radius of Curvature (ft)									Na	14.4	39.8	23.3	Na	Na	Na			Na
Meander Wavelength (ft)									Na	39	64	50.4	Na	Na	Na			Na
Meander Width ratio									Na	3.6	5.9	4.6	Na	Na	Na			Na
Profile																		
Riffle Length									Na	Na	Na	Na	Na	Na	Na	13.6	123.04	65.47
Riffle Slope									Na	0.00	.055	.0022	0	.004	Na	.00152	.00523	.00334
Pool Length									Na	Na	Na	13	Na	Na	15	112.67	609.88	289.02
Pool Spacing									Na	16	45	32.3	18	50	34	134	506.48	356.01
Substrate																		
d50 (mm)																0.04	.34	.05
d84 (mm)																0.63	10.64	1.2
Additional Reach Parameters																		
Valley Length (ft)	-				1				1891						1875			1871
Channel Length									1833			280			1876			1869
(ft) Sinuosity									1.01			1.3			1.003			1.01
Water Surface Slope									.0001	0	.0055	.003	0	.004	.0022			.00215
BF Slope									Na			Na			Na			.00413
Rosgen Classification									G5c			C5			C5			C5
*Habitat Index			l	l						l			l	l				
*Macrobenthos																		

2.2.6 Quantitative Measures Summary

	Exhibit Table VIII. Baseline Morphology and Hydraulics Summary East Tarboro Canal Stream Restoration Site - EEP Project No. 123 Reach 2 (2933 feet)																	
							J	Reach 2	2 (2933	feet)		Ť						
Parameter	US	GS G Data	-		ional (Interv			e-Exist Conditi			ject Stı Referen			Desig	ı		As-Buil	t
Dimension	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
BF Width (ft)						14.55	14	17	15	10.8	11	10.9	Na	Na	20	17.66	30.32	20.6
Flood Prone Width (ft)						24.34	22.8	25.4	24.1	8.3	9.6	9	Na	Na	29.25	20.52	31.22	26.73
BF Cross Sectional Area (SF)						1.63	1.5	1.72	1.61	0.77	0.87	0.82	Na	Na	1.46	.89	1.41	1.25
BF Mean Depth (ft)							2.2	2.37	2.32	1.24	1.45	1.34	Na	Na	2.5	1.75	3.5	2.69
BF Max Depth (ft)							8.2	11.4	9.4	12.6	14.1	13.4	Na	Na	13.7	13.23	34.07	16.22
Width/Depth Ratio							1.5	1.7	NA	9.1	9.3	Na	2.2	6	Na	1.75	5.52	4.65
Entrenchment Ratio							17.6	31.1	21.75	Na	Na	Na	Na	Na	Na	19.2	30.78	21.88
Bank Height Ratio							.87	1.36	1.14	Na	Na	Na	Na	Na	Na	0.88	1.29	1.19
Wetted Perimeter (ft)																		
Hydraulic Radius (ft)																		
Pattern																		
Channel							29	47	39	12.5	25	18.8	22	46	34	20.58	52.64	36.53
Beltwidth (ft) Radius of Curvature (ft)							75	560	220	14.4	39.8	23.3	40	72	56	22.99	71.49	37.54
Meander Wavelength (ft)							154	226	190	39	64	50.4	72	170	Na	100.91	147.43	129.22
Meander Width ratio							10.3	15.1	12.7	3.6	5.9	4.6	1.1	2.3	1.7	0.374	0.956	0.663
Profile																		
Riffle Length							Na	Na	Na	Na	Na	Na	Na	Na	Na	Na	Na	64.25
Riffle Slope							.002	.0044	.0002	0	.0055	.0022	0	.0036	Na	Na	Na	.00543
Pool Length							Na	Na	23.3	Na	Na	13	Na	Na	24	49.66	113.74	70.29
Pool Spacing							44	133	90	16	45	32.3	32	86	59	72.09	416.51	206.2
Substrate																		
d50 (mm)																.05	2	1.14
d84 (mm)																1.88	18.06	4.49
Additional Reach Parameters																		
Valley Length (ft)									2722						2722			2722
Channel Length									2946			280			2946			2946
(ft) Sinuosity									1.03			1.3	1.2	1.4	1.1			1.19
Water Surface Slope									.0007	0	.0055	.003	0	.0036				.00185
BF Slope							0	.0044	Na			Na			Na			.00179
Rosgen Classification									G5c			C5			C5			C5
*Habitat Index																		
*Macrobenthos																		

						Stream		ation	Site -			ummary No. 123						
Parameter	Cros	ss Sectio	on 1	Cros	ss Sec	ction 2	Cr	ross S	ection	3	Cr	oss Sectio	on 4		С	ross Se	ction 5	
Dimension	MY0	MY1		MY0	MY	′1	MYO	M	Y 1		MY0	MY1		MY	′0	MY1		
BF Width (ft)	10.26	13.3		11.07	9.4		11.62	2 10	.9		11.04	10.9			11.63	13		
Floodprone Width (ft) (approx)	22.9	22.5		25.2	-		22.	4 22	.7		20.74	22.9			28.23	30.6		
BF Cross Sectional Area (ft2)	13.72	11.5		17.13			14.7		.3		12.05	12.6			16.42	25.6		
BF Mean Depth (ft)	1.34	0.9		1.55			1.2		;		1.09	1.2			1.41	2.8		
BF Max Depth (ft)	1.9	1.8		2.85			1.7		;		1.7	2.2			2.44	2.0		
Width/Depth Ratio	7.66	915.3		7.14	-		9.1				10.13	9.4			8.25	6.6		
Entrenchment Ratio	2.23	1.7		2.28			1.9				1.88	2.1			2.43	8.9		
Wetted Perimeter (ft)		14.6		20	11.0			12	.5		1.00	11.7	1			14.9		
Hydraulic radius (ft)		0.8			1.2	-		1.1				1.1				1.7		
Substrate																		
d50 (mm)	0.05	0.07		0.34	0.18	8	0.0	0.0	96		0.12	0.11			0.04		0.1	
d84 (mm)	1.2	0.28		4.95	1.6		0.8	5 1.3	;		0.63	0.45			10.64		0.43	
Barrantan	MY-00	(2007)		MY-01 (2	2000)		MY-02	(2000)			/-03 (2010		MY-04	(2011)			5 (2012)	
Parameter Pattern	Min	Max	Med		-	Med	Min	(2009) Max	Med				Min	Max	Med	Min	Max	Med
	IVIIII	IVIdX	weu	IVIIII	Max	weu	IVIIII	IVIdX	Ivieu	IVII	n Max	Ivieu		IVIAX	ivieu	IVIIII	IVIdX	Ivieu
Channel Beltwidth (ft) Radius of Curvature (ft)																		
Meander Wavelength (ft)																-		
Meander Width Ratio																_		+
Profile																		
Riffle Length (ft)																		
Riffle Slope (ft)										_								
Pool Length (ft)																		
Pool Spacing (ft) Additional Reach Parameters																		
Valley Length (ft)																		-
Channel Length (ft)																		1
Sinousity																		
Water Surface Slope (ft/ft)																		+
BF Slope (ft/ft)										_								<u> </u>
Rosgen Classification										_						_		+
*Habitat Index										_						_		
*Macrobenthos									1		I				1			<u> </u>

East Tarboro Canal Stream Restoration Project – EEP No. 123 RK&K – Monitoring Year 1 of 5 Dr

				able IX- boro Ca		tream	Resto		Site - E			ummary No. 123	,					
Parameter	Cros	ss Secti	on 6	Cros	ss Sec				ection 8		Cro	oss Sectio	on 9		C	ross Sec	tion 10	
Dimension	MY0	MY1		MY0	MY	1	MYO	M	Y1	N	1Y0	MY1		MY	′0	MY1		
BF Width (ft)	30.32	36.6		22.54	26.8	3	20	0.6 12	.7		19.36	34.7			20.6	22.7		
Floodprone Width (ft) (approx)	100	115		100	85.5	i		75 51	.7		101.4	78.6			100	92.4		
BF Cross Sectional Area (ft2)	26.95	24		31.22	30		22.	99 12	.1		27.34	22.118			25.78	21.6		
BF Mean Depth (ft)	0.89	.67		1.39	1.1		1.	12 0.9	95		1.41	0.5			1.25	0.95		
BF Max Depth (ft)	1.75	1.6		3.5	4.2			2.6 3.0)		3.21	4.9			2.63	2.9		
Width/Depth Ratio	34.07	55.7		16.22)	18.				13.73	66.9			16.48	23.8		
Entrenchment Ratio	3.3	3.1		4.44	3.2		3.	64 4.1	L		5.24	12.3			4.85	4.1		
Wetted Perimeter (ft)		24.1			28.6	5		15				12.6				23.9		
Hydraulic radius (ft)		0.7			1			0.8	3			1				0.9		
Substrate																		
d50 (mm)	1.05	0.67		0.05	.062	2	0.	05 0.1	L .		1.95	1.7			2		2	
d84 (mm)	1.88	1.6		18.06	.49			4 4.6			5.25	3.9			5.26		5.4	
Parameter	MY-00	(2007)		MY-01 (2	2008)		MY-02	2 (2009)		MY-0	3 (2010)	MY-04	4 (2011)		MY-0	5 (2012)	
Pattern	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)																		
Radius of Curvature (ft)																		
Meander Wavelength (ft)																		
Meander Width Ratio																		
Profile																		
Riffle Length (ft)																		
Riffle Slope (ft)																		
Pool Length (ft)																_		
Pool Spacing (ft)																		
Additional Reach Parameters																		
Valley Length (ft)																		
Channel Length (ft)																		
Sinousity																		
Water Surface Slope (ft/ft)																		
BF Slope (ft/ft)																		
Rosgen Classification																		
*Habitat Index																		
*Macrobenthos																		1

				able IXA boro Ca		eam F		ation §	Site - El									
Parameter	Cros	s Sectio	on 11	Cros	s Sectio				ction 13									
Dimension	MY0	MY1		MY0	MY1		MY0	MY	1									
BF Width (ft)	18.93	15.1		18.13	15.6		21.5	2 9.6										
Floodprone Width (ft) (approx)	100	97.3		100	89.5		10	0 38										
BF Cross Sectional Area (ft2)	26.71	18.2		24.83	12.9		26.7		5									
BF Mean Depth (ft)	1.41	1.2		1.37	0.8		1.2											
BF Max Depth (ft)	2.68	2.9		2.52	2.3		2.9	6 2.7										
Width/Depth Ratio	13.43	12.6		13.23	18.9		17.3	5 6.9										
Entrenchment Ratio	5.28	6.4		5.52	5.7		4.6	5 3.9										
Wetted Perimeter (ft)	20.87	16.6		19.2	16.7		23.1											
Hydraulic radius (ft)	1.28	1.1		1.29	0.8		1.1											
Substrate	·																	
d50 (mm)	N/A	0.76		1.14	0.71		1.9	7 2.1										
d84 (mm)	N/A	2.7		4.49	2.8		4.1	9 4.6										
Parameter	MY-00	(2007)		MY-01 (2	008)		MY-02	(2009)		MV-03	3 (2010)		MV-0/	4 (2011)		MV-05	5 (2012)	
Pattern	Min	Max	Med		· · ·	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med	Min	Max	Med
Channel Beltwidth (ft)																		
Radius of Curvature (ft)																		
Meander Wavelength (ft)																		
Meander Width Ratio																		
Profile																		
Riffle Length (ft)																		
Riffle Slope (ft)																		
Pool Length (ft)																		
Pool Spacing (ft)																		
Additional Reach Parameters																		
Valley Length (ft)																		
											1	1	1	1		1		
Channel Length (ft)																		
Channel Length (ft) Sinousity																		
Sinousity																		
Sinousity Water Surface Slope (ft/ft)																		
Sinousity Water Surface Slope (ft/ft) BF Slope (ft/ft)																		

3.0 References

USACOE (2003). *Stream Mitigation Guidelines*. USACOE, USEPA, NCWRC, NCDENR-DWQ.

USACOE (1987). *Corps of Engineers Wetlands Delineation Manual*. Tech report Y-87-1. AD/A176.

Rosgen, D.L. (1996) *Applied River Morphology*. Wildland Hydrology books, Pagosa Springs, CO.

Lee, M.T., R.K. Peet, S.D. Roberts, T.R. Wentworth. (2006). CVS-EEP Protocol for Recording Vegetation Version 4.0

APPENDIX A

A.1 Vegetation Data Tables

Exhibit Table A1. Vegetation Metadata

Report Prepared By	William (Pete) Stafford
Date Prepared	11/12/2008 10:47
Database Name	EastTarboroCanal.mdb
Database Location	C:\Documents and Settings\pstafford\Desktop\CVS Veg Data
Computer Name	STAFFORDP
Description Worksheets In This Document	
Metadata	This worksheet, which is a summary of the project data.
Planted	Each project is listed with its PLANTED stems, for each year. This excludes live stakes and lists stems per acre.
Total Stems	Each Project is listed with its total stems for each year. This includes live stakes, all planted stems, and all natural/volunteer stems. Listed in stems per acre.
Plots	List of Plots surveyed
Vigor	Frequency distribution of vigor classes
Vigor by Species	Frequency distribution of vigor classes listed by species
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each
Damage by Species	Damage values tallied by type for each species
Damage by Plot	Damage values tallied by type for each plot
Planted Stems by Plot	Count of planted living stems of each species for each plot; dead and missing stems are excluded
Project Summary	
EEP Project Number	123
Project Name	East Tarboro Canal
Description	Stream Restoration
River Basin	Tar-Pamlico
Length (ft)	
Stream to Edge width (ft)	
Area (sq. m)	
Required Plots (calculated)	
Sampled Plots	13

	Species	4	3	2	1	0	Missing	Unknown
	Alnus serrulata	1	1					
	Betula nigra		2					
	Callicarpa americana	1	3	1				
	Cornus florida	1						
	Fraxinus pennsylvanica		1	1				
	Itea virginica		2					
	Nyssa biflora	1	4	3				
	Quercus laurifolia	2		1				
	Quercus lyrata	1						
	Quercus pagoda	4	3					
	Quercus palustris	2						
	Quercus phellos	2	1	1				
	Rosa palustris	3	3	1				
	Salix caroliniana		2	2				
	Taxodium distichum	1						
	Myrica	12	1	2				
	Unknown	1	15	10	21	1		
TOT:	17	32	38	22	21	1		

Exhibit Table A2. Vegetation Vigor by Species

Exhibit Table A3. Vegetation Damage by Species

		All	(
	Species	Damage Categories	(no damage)	Cut	Deer	Unknown
	Alnus serrulata	2	1	Cut	1	Chikhowh
	Betula nigra	2	2			
-	Callicarpa americana	5	4			1
	Cornus florida	1			1	
	Fraxinus pennsylvanica	2	2			
	Itea virginica	2	1			1
	Myrica	15	15			
	Nyssa biflora	8	7		1	
	Quercus laurifolia	3	3			
	Quercus lyrata	1	1			
	Quercus pagoda	7	7			
	Quercus palustris	2	2			
	Quercus phellos	4	4			
	Rosa palustris	7	7			
	Salix caroliniana	4	3	1		
	Taxodium distichum	1	1			
	Unknown	48	42		5	1
TOT:	17	114	102	1	8	3

Exhibit Table A4. Vegetation Damage by Plot

	plot	All Damage Categories	(no damage)	Cut	Deer	Unknown
	123-wes-0001-year:1	4	2		1	1
	123-wes-0002-year:1	8	8			
	123-wes-0003-year:1	7	7			
	123-wes-0004-year:1	10	10			
	123-wes-0005-year:1	12	11	1		
	123-wes-0006-year:1	6	5			1
	123-wes-0007-year:1	11	9		1	1
	123-wes-0008-year:1	6	4		2	
	123-wes-0009-year:1	9	8		1	
	123-wes-0010-year:1	11	10		1	
	123-wes-0011-year:1	11	11			
	123-wes-0012-year:1	10	8		2	
	123-wes-0013-year:1	9	9			
TOT:	13	114	102	1	8	3

Exhibit Table A5. Stem Count by Plot and Species

	Species	Total Planted Stems	# plots	avg# stems	plot 123-wes-0001- year:1	plot 123-wes-0002- year:1	plot 123-wes-0003- year:1	plot 123-wes-0004- year:1	plot 123-wes-0005- year:1	plot 123-wes-0006- year:1	plot 123-wes-0007- year:1	plot 123-wes-0008- year:1	plot 123-wes-0009- year:1	plot 123-wes-0010- year:1	plot 123-wes-0011- year:1	plot 123-wes-0012- year:1	plot 123-wes-0013- year:1
	Alnus serrulata	2	2	1	1								1				
	Betula nigra	2	1	2													2
	Callicarpa americana	5	3	1.67		2		1		2							
	Cornus florida	1	1	1										1			
	Fraxinus pennsylvanica	2	2	1					1			1					
	Itea virginica	2	2	1	1										1		
	Myrica	15	7	2.14		3		3		1				2	2	2	2
	Nyssa biflora	8	3	2.67				3	2				3				
	Quercus Iaurifolia	3	2	1.5				2						1			
	Quercus lyrata	1	1	1			1										
	Quercus pagoda	7	3	2.33			2				1		4				
	Quercus palustris	2	2	1						1	1						
	Quercus phellos	4	2	2	2										2		
	Rosa palustris	7	6	1.17			1		1		2	1		1	1		
	Salix caroliniana	4	1	4					4								
	Taxodium distichum	1	1	1		1											
	Unknown	47	12	3.92		2	3	1	4	2	6	4	1	6	5	8	5
TOT:	17	113	17		4	8	7	10	12	6	10	6	9	11	11	10	9

Exhibit Table A6. Stream Problem Areas

Feature Issue	Reach	Station Number	Suspected Cause	Photo Number
Deer Browse	Reach 1	Located throughout the	Deer	
		project		
	Reach 2	Located throughout the	Deer	
		project		
Mowing	Reach1	Entire Reach	Mowing	VPA1
Vegetation	Reach 2	Located throughout	Dry conditions that	VPA2
constricting		Reach 2	have allowed seeds to	
channel flow			germinate	
Cattails	Reach 2	Located throughout	Dry conditions that	VPA 3
		Reach 2	have allowed seeds to	
			germinate	

A.2 Vegetation Problem Areas (All Photos taken on October 14, 2008)

VPA 1 Reach 1 mowed riparian area

VPA 2 Reach 2 Vegetation Growing in the stream bed

VPA 3 Reach 2 (throughout) Cattails growing in stream bed

A.3 Vegetation Plot Photos (all photos recorded on November 10, 2008)

Vegetation Plot 1 (October 14, 2008)

Vegetation Plot 3

Vegetation Plot 5

Vegetation Plot 7

Vegetation Plot 9

Vegetation Plot 11

Vegetation Plot 13

APPENDIX B

Appendix B. Geomorphologic Raw Data

B.1 Problem Area Plan View (Stream)

See the integrated Problem Area Plan View in Appendix D for stream problem areas

B.2 Stream Problem Areas Table

I	Exhibit Table B.1 Stream Problem Areas East Tarboro Canal Stream Restoration Site EEP Project No. 123										
Feature Issue	Reach	Station Number	Suspected Cause	Photo Number							
Aggradation	Reach 1	20+25	Sediment from upstream	SP1							
Aggradation	Reach 2	10+50	Sediment from upstream	N/A							
Debris	Reach 2	10+100	N/A	SP2							
Structure Failure	Reach 2	21+50	Poor Installation	SP3							

B.3 Representative Stream Problem Areas Photos (Photos recorded on October 14, 2008)

SP1 Reach 1 Station 20+25 Aggradation

SP2 Reach 2 Station 10+100 Debris in channel

SP3 Reach 2 Station 21+ 50 Rock Vein Failure

B.5 Qualitative Visual Stability Assessment

Feature CategoryMetric (per As-built and reference baselines)Number Performing as IntendedNumber/Feet per AsilPerforming in Unstable in Unstable inten		Exhibit Table B.2.2. Vis East Tarboro Canal Stre	am Restoratio	0	•		
A. Riffles 1. Present? 17 17 0.00 100.00 2. Armor stable (eg no displacement?) NA NA NA 0.00 NA 3. Facet grade appears stable? 17 17 0.00 100.00 100.00 4. Minimal evidence of embedding/fining? 17 17 0.00 100.00 100.00 5. Length appropiate? 17 17 0.00 100.00 100.00 B. Pools 1. Present? (e.g. not subject to severe aggrad. or migrat.?) 16 16 0.00 100.00 2. Sufficiently deep (Max Pool D:Mean Bk7 > 1.6?) 16 16 0.00 100.00 3. Length appropriate? 16 16 0.00 100.00 100.00 C. Thalweg 1. Upstream of meander bend (run/inflection) centering? NA NA NA D. Meanders 1. Outer bend in state of limited/controlled erosion? 1 1 0.00 100.00 2. Of those eroding, $\#$ w/concomitant point bar formation? 1 1 0.00 100.00 3. Apparent Rc within spec? 1 1 0.00 100.00 1 2.			(# Stable) Number Performing as	Number per As-	Number/Feet in Unstable	Perform in Stable	Feature Perform. Mean or Total
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	A. Riffles	1. Present?		17	0.00	100.00	
			NA	NA	0.00	NA	
		3. Facet grade appears stable?	17	17	0.00	100.00	
B. Pools 1. Present? (e.g. not subject to severe aggrad. or migrat.?) 16 16 0.00 100.00 2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?) 16 16 0.00 100.00 3. Length appropriate? 16 16 0.00 100.00 C. Thalweg 1. Upstream of meander bend (run/inflection) centering? NA NA NA D. Meanders 1. Outer bend in state of limited/controlled erosion? 1 1 0.00 100.00 2. Of those eroding, # w/concomitant point bar formation? 1 1 0.00 100.00 3. Apparent Rc within spec? 1 1 0.00 100.00 100.00 4. Sufficient floodplain access and relief? 1 1 0.00 100.00 100.00 2. Channel bed aggradation areas (bar formation) 1800 1800 0.00 100.00 100.00 4. Actively eroding, wasting, or F. Bank 1. Actively eroding, wasting, or slumping bank? 1800 1800 0.00 100.00 5. Height appropriate? 7 7 0.00 100.00 100.00 <td></td> <td></td> <td>17</td> <td>17</td> <td>0.00</td> <td>100.00</td> <td></td>			17	17	0.00	100.00	
B. Pools severe aggrad. or migrat.?) 16 16 0.00 100.00 2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?) 16 16 0.00 100.00 3. Length appropriate? 16 16 0.00 100.00 100.00 C. Thalweg 1. Upstream of meander bend (run/inflection) centering? NA NA NA NA 2. Downstream of meander (glide/inflection) centering? NA NA NA NA D. Meanders 1. Outer bend in state of formation? 1 0.00 100.00 100.00 2. Of those eroding, # w/concomitant point bar formation? 1 1 0.00 100.00 3. Apparent Rc within spec? 1 1 0.00 100.00 100.00 4. Sufficient floodplain access and relief? 1 1 0.00 100.00 100.00 5. Bed General 1. General channel bed aggradation areas (bar agradation areas (bar areas of increasing down-cutting or head-cutting? 1800 1800 0.00 100.00 6. Vanes 1. Free of back or arm scour? 7 7 0.00		5. Length appropiate?	17	17	0.00	100.00	100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	B. Pools	severe aggrad. or migrat.?)	16	16	0.00	100.00	
3. Length appropriate? 16 16 0.00 100.00 C. Thalweg 1. Upstream of meander bend (run/inflection) centering? NA NA NA NA NA 2. Downstream of meander (glide/inflection) centering? NA NA NA NA NA NA D. Meanders 1. Outer bend in state of (glide/inflection)centering? NA NA NA NA NA D. Meanders 1. Outer bend in state of (glide/inflection)centering? 1 1.0.000 100.00 100.00 2. Of those eroding, # w/concomitant point bar formation? 1 1 0.00 100.00 100.00 3. Apparent Rc within spec? 1 1 0.00 100.00			16	16	0.00	100.00	
C. Thalweg1. Upstream of meander bend (run/inflection) centering?NANANANA2. Downstream of meander (glide/inflection) centering?NANANANANAD. Meanders1. Outer bend in state of limited/controlled erosion?110.00100.002. Of those eroding, $\#$ w/concomitant point bar formation?110.00100.003. Apparent Rc within spec?110.00100.004. Sufficient floodplain access and relief?110.00100.005. Channel bed aggradation areas (bar formation)180018000.00100.006. Channel bed aggradation areas (bar or head-cutting?180018000.00100.007. Actively eroding, wasting, or slumping bank?180018000.00100.006. Vanes1. Free of back or arm scour?770.00100.002. Height appropriate?770.00100.00100.004. Free of piping or other structural failures?770.00100.00		· · · · · · · · · · · · · · · · · · ·	1	i			100
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	C. Thalweg	1. Upstream of meander bend				100.00	100
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-		NA	NA	NA		NA
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	D. Meanders	limited/controlled erosion? 2. Of those eroding, #	1	1	0.00	100.00	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1	1	0.00	100.00	
4. Sufficient floodplain access and relief?11 0.00 100.00 E. Bed General1. General channel bed aggradation areas (bar formation)18001800 0.00 100.00 2. Channel bed degradation - areas of increasing down-cutting or head-cutting?18001800 0.00 100.00 F. Bank1. Actively eroding, wasting, or slumping bank?18001800 0.00 100.00 G. Vanes1. Free of back or arm scour?77 0.00 100.00 2. Height appropriate?77 0.00 100.00 4. Free of piping or other structural failures?77 0.00 100.00		3. Apparent Rc within spec?	1	1		100.00	
E. Bed Generalaggradation areas (bar formation)180018000.00100.002. Channel bed degradation - areas of increasing down-cutting or head-cutting?180018000.00100.00F. Bank1. Actively eroding, wasting, or slumping bank?180018000.00100.00G. Vanes1. Free of back or arm scour?770.00100.002. Height appropriate?770.00100.003. Angle and geometry appear appropriate?770.00100.004. Free of piping or other structural failures?770.00100.00		4. Sufficient floodplain access	1	1	0.00	100.00	100
areas of increasing down-cutting or head-cutting?180018000.00100.001. Actively eroding, wasting, or slumping bank?180018000.00100.00G. Vanes1. Free of back or arm scour?770.00100.002. Height appropriate?770.00100.003. Angle and geometry appear appropriate?770.00100.004. Free of piping or other structural failures?770.00100.00	E. Bed General	aggradation areas (bar	1800	1800	0.00	100.00	
F. Bank slumping bank? 1800 1800 0.00 100.00 G. Vanes 1. Free of back or arm scour? 7 7 0.00 100.00 2. Height appropriate? 7 7 0.00 100.00 3. Angle and geometry appear appropriate? 7 7 0.00 100.00 4. Free of piping or other structural failures? 7 7 0.00 100.00		areas of increasing down-cutting	1800	1800	0.00	100.00	100
G. Vanes 1. Free of back or arm scour? 7 7 0.00 100.00 2. Height appropriate? 7 7 0.00 100.00 3. 3. Angle and geometry appear appropriate? 7 7 0.00 100.00 100.00 4. Free of piping or other structural failures? 7 7 0.00 100.00 100.00	F. Bank		1800	1800	0.00	100.00	100
3. Angle and geometry appear appropriate?770.00100.004. Free of piping or other structural failures?770.00100.00					0.00		
appropriate?770.00100.004. Free of piping or other structural failures?770.00100.00		2. Height appropriate?	7	7	0.00	100.00	
structural failures? 7 7 0.00 100.00		appropriate?	7	7	0.00	100.00	
Π Ι Ι Ι Ι Ι Ι			7	7	0.00	100.00	100
H. NA NA NA Wads/Boulders 1. Free of scour? NA NA NA 2. Footing stable? NA NA NA NA	H. Wads/Boulders		1			1 1	NA

	East Tarboro Canal Stream	n Restoration Reach 2	SITE EEP P	roject No. 123		
Feature Category	Metric (per As-built and reference baselines)	(# Stable) Number Performing as Intended	Total Number per As- built	Total Number/Feet in Unstable State	% Perform in Stable Condition	Feature Perform. Mean or Total
A. Riffles	1. Present?	42	44	0	95.00	
	2. Armor stable (eg no displacement?)	NA	NA	NA	NA	
	3. Facet grade appears stable?	44	44	0	100.00	
	4. Minimal evidence of embedding/fining?	44	44	0	100.00	
	5. Length appropiate?	44	44	0	100.00	95
B. Pools	1. Present? (e.g. not subject to severe aggrad. or migrat.?)	41	42	1	97.62	
	2. Sufficiently deep (Max Pool D:Mean Bkf > 1.6?)	42	42	1	97.62	
	3. Length appropriate?	42	42	0	100.00	98
C. Thalweg	1. Upstream of meander bend (run/inflection) centering?	NA	NA	NA		
	2. Downstream of meander (glide/inflection) centering?	NA	NA	NA		NA
D. Meanders	1. Outer bend in state of limited/controlled erosion?	44	44	0	100.00	
	2. Of those eroding, # w/concomitant point bar formation?	44	44	0	100.00	
	3. Apparent Rc within spec?	44	44	0	100.00	
	4. Sufficient floodplain access and relief?	44	44	0	100.00	100.00
E. Bed General	1. General channel bed aggradation areas (bar formation)	2733	2933	0	93.18	
	2. Channel bed degradation - areas of increasing down-cutting or head- cutting?	2933	2933	0	100.00	93.18
F. Bank	1. Actively eroding, wasting, or slumping bank?	2933	2933	0	99.61	100
G. Vanes	1. Free of back or arm scour?	19	19	0	100.00	
	2. Height appropriate?	19	19	0	100.00	
	3. Angle and geometry appear appropriate?	19	19	0	100.00	
	4. Free of piping or other structural failures?	19	19	0	100.00	100
H. Wads/Boulders	1. Free of scour?	NA	NA	0	100.00	
	2. Footing stable?	NA	NA	0	100.00	100

B.4 Stream Photo Station Photos (all photos recorded on October 14, 2008)

Photo Station 1. Beginning of Reach 1

Photo Station 2. Reach 1 Culvert upstream

Photo Station 3. Reach 1 Culvert Downstream

Photo Station 4. End of Reach 1 Upstream

Photo Station 5. Beginning of Reach 2 Downstream

Photo Station 6. Beginning of Reach 2 Upstream

Photo Station 7. Wilson Street Crossing Upstream

Photo Station 8. Wilson Street Crossing - Downstream

Photo Station 9. Culvert Upstream

Photo Station 10. Pool Culvert Downstream

Photo Station 11. Reach 2 End of Project

12 Rack line in the floodplain

Image: Display in the second	Project Name Cross Section Feature Date Crew										
East Tarboro Canal 2008 Cross Section 1 - Reach 1 55.00 53.00 53.00 55.00 55.00 50.00 49.00 49.00 49.00 45.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00	Station	As-Built Survey As-Built Survey As-Built Survey 0 52.65 LP1N 5 52.65 T 7 51.86 15 48.89 21.4 48.68 BKF 24.7 47.32 24.7 47.22 LEW 26.2 46.78 TW 27.6 46.91 29 46.81 29.9 47.19 REW 31.00 49.120 33.60 49.980 38.20 52.440	2008 Survey Station Elevation No 0.00 52.49 No 7.24 52.25 11.63 50.65 15.53 48.78 22.38 48.15 24.34 47.82 24.66 47.41 26.42 46.91 28.04 46.82 28.44 47.10 30.09 47.19 30.61 47.92 30.32 48.61	2009 Survey	2010 Survey	2011 Survey	2012 Survey	Width Mean Depth Max Depth	AsBuilt 2008 13.72 11.5 10.26 13.3 1.34 0.9 1.90 1.8	 	2012
45.00 0.00 10.00 20.00 30.00 40.00 50.00 60.00 70.00	Elevation (feet)	54.00 53.00 52.00 51.00 50.00 49.00 48.00 47.00			Cross Sect	tion 1 - Reach	n 1				
2008 Survey As-Built		45.00	10.0	00 20.00		Distance (feet)		50.00	60.00	70.00	

Project Name East Tarboro Canal Cross Section #1 Feature Riffle Date Oct-08 Crew Tutt, Stafford									
As-Built Survey As-Built Survey As-Built Survey Station Elevation Notes 0 52.64 LPIN 6.4 52.31 10.5 50.4 15.8 47.4 17.4 46.93 21 46.74 22 46.33 22.6 45.83 22.6 45.83 LEW 24.8 45.16 26.3 45.14 27.4 45.04 TW 29 45.47 29.8 45.81 REW 31 46.14 32 46.67 32.4 47.43 34.4 48.18 39.3 52.45 44 52.63 50 52.49 RPIN	2008 2008 Survey 51ation Elevation Notes 0.00 52.79 9.85 50.65 15.26 47.41 20.71 46.51 22.56 46.26 27.14 44.80 29.78 46.08 31.96 47.04 32.85 47.85 34.91 48.43 39.99 52.71 49.83 52.80	2009 2009 Survey Station Elevation Notes	2010 2010 Survey Station Elevation Notes	2011 2011 Survey Station Elevation Notes	2012 2012 Survey Station Elevation Notes	Area As Area 12 Width 11 Mean Depth 1	05 12.60 04 10.90 09 1.20 70 2.20	Ŭ	2011 2012

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
Crew Tut, Stafford 2008 2009 2009 2010 2011 2011 2012					
As-Built Survey As-Built Survey 2008 Station 2009 Station 2010 2009 Survey 2010 2010 Survey 2011 2011 Survey 2012 2013 Survey 2012 2012 Survey Station Elevation Notes					
Image: Note of the series of the ser					
Image: Note of the series of the ser					
Station Elevation Notes					
0 5333 LPIN 0.00 54.16 13 47.46 11.84 84.84 16.2 46.23 16.20 46.73 17.2 45.85 16.93 46.34 17.4 44.92 18.89 44.38 19.6 44.56 LEW 21.06 43.93 20.7 43.99 24.01 44.25 21.3 43.84 TW 26.04 44.22 22.8 44.25 28.11 45.13 24 44.56 REW 29.76 46.70 26 45.38 33.94 46.74 27.7 46.28 BKF 33.91 47.15 33 46.56 41.89 49.39 49 52.63 47.53 51.53 63 53.25 63.25 53.64 60 53.49 RPIN					
13 47.46 11.84 48.41 16.2 46.23 16.20 46.76 17.2 45.85 16.03 46.34 17.4 44.92 18.89 44.38 19.6 44.56 LEW 21.06 43.93 20.7 43.99 24.01 44.25 21.3 43.84 70.6 44.25 22.8 44.25 28.11 45.13 24 44.56 EW 29.76 46.70 26 45.38 33.94 46.74 27.7 46.28 BKF 35.91 47.15 33 46.56 41.89 49.39 49 49 52.63 47.33 51.53 53 53.25 63.25 53.64 60 53.49 RPIN					
162 46.23 16.20 46.73 172 45.85 16.93 46.34 174 44.92 18.89 44.38 19.6 44.56 120.6 43.93 20.7 43.99 24.01 44.25 21.3 43.44 TW 26.04 44.22 22.8 44.25 28.11 45.13 24 44.25 28.11 45.13 24 44.56 120.7 46.70 26 45.38 33.94 46.74 27.7 46.28 BKF 35.91 47.15 33 46.56 41.89 49.39 49 52.63 47.53 51.53 53 53.25 53.64 60 53.49 RPIN					
17.4 44.92 18.89 44.38 19.6 44.96 LEW 21.06 43.93 20.7 43.99 24.01 44.25 21.3 43.84 TW 26.04 44.22 22.8 44.25 28.11 45.13 24 44.56 REW 29.76 46.74 27.7 46.28 BKF 35.91 47.15 33 46.66 41.89 49.39 46.32 49 52.63 47.53 51.53 53 53.25 63.25 53.64 60 53.49 RPIN					
19.6 44.66 LEW 21.06 43.93 20.7 43.99 24.01 44.25 21.3 43.84 TW 26.04 44.22 22.8 44.25 28.11 45.13 24 44.56 REW 29.76 46.70 26 45.38 33.94 46.74 27.7 46.28 BKF 35.91 47.15 33 46.56 41.89 49.39 49 52.63 47.53 51.53 53 53.25 63.25 53.64 60 53.49 RPIN					
207 43.99 24.01 44.25 21.3 43.84 TW 26.04 44.22 22.8 44.25 28.11 45.13 24 44.56 REW 29.76 46.74 26 45.38 33.94 46.74 27.7 46.28 BKF 35.91 47.15 33 46.56 41.89 49.39 49 52.63 47.53 51.53 53 53.25 53.64 60 53.49 RPIN					
21.3 43.84 TW 26.04 44.22 22.8 44.25 28.11 45.13 24 44.56 REW 29.76 46.70 26 45.38 33.94 46.74 27.7 46.28 BKF 35.91 47.15 33 46.56 41.89 49.39 49 52.63 47.53 51.53 53 53.25 63.25 53.64 60 53.49 RPIN 53.49 RPIN 53.49 RPIN					
22.8 44.25 28.11 45.13 24 44.56 REW 29.76 46.70 26 45.38 33.94 46.74 27.7 46.28 BKF 35.91 47.15 33 46.56 41.89 49.39 49 52.63 47.33 51.53 53 53.25 53.64 60 53.49 RPIN					
24 44.63 REW 29.76 46.70 26 45.38 33.94 46.74 27.7 46.28 BKF 35.91 47.15 33 46.66 41.89 49.39 49 52.63 47.53 51.53 53 53.25 63.25 53.64 60 53.49 RPIN		12-12		ME.	
26 45.38 33.94 46.74 27.7 46.28 BKF 35.91 47.15 33 46.56 41.89 49.39 49 52.63 47.53 51.53 53 53.25 63.25 53.64 60 53.49 RPIN	A States	STREET, AL	Contraction of the second		
27.7 46.28 BKF 35.91 47.15 33 46.56 41.89 49.39 49 52.63 47.33 51.53 53 53.25 63.25 53.64 60 53.49 RPIN 53.49				Collection of the	
33 46.56 41.89 49.39 49 52.63 47.53 51.53 53 53.25 63.25 53.64 60 53.49 RPIN		HE THE SO		ALC: NO	A DECEMBER
49 52.63 47.53 51.53 53 53.25 63.25 53.64 60 53.49 RPIN	20.00		the second		
53 53.25 63.25 53.64 60 53.49 RPIN	A Statement	100	15.25		
60 53.49 RPIN	1 2 C			minute the	San Sec.
	an distance of		15 577	100	
	Alter and		1.4		and the second
			A CONTRACTOR	CALCULATION OF	ALL STREET, ST.
			_		
	noto of Cross-Sectio	1 #5 - Looking	g Downstream	m	
					1
		2009	2010	2011	2012
Area	AsBuilt 2008		1 1		
Width	AsBuilt 2008 16.42 25.60		1 '		
Mean Depth	16.42 25.60 11.63 13.00		1 '		
Max Depth	16.42 25.60 11.63 13.00 1.41 2.80				
W/D	16.42 25.60 11.63 13.00		1 6		1

7.84 12.20 16.20

Cross for the Terme Construction	Project Name	East	t Tarboro Canal																	
Bute (ref Oct.30 Construction	Cross Section	#1																		
Crev TutSufuit 2008 2008 2009 2010 2011 2012 <th>Feature</th> <th></th>	Feature																			
As-Built Survey As-Built Survey 2008 2009 2009 Survey 2010 2011 2012 2012 Survey 2012 Survey 2012																				
Ak-Bulk weight weigh	Crew	Tutt	t, Stafford																	
Area 31.22 30.00 2010 2011 Width 22.54 25.680 1.10	Station	As-Built S As-Built S As-Built S 0 3 14.8 22 32 37 40.5 43 45.2 46.6 46.9 48 49 51 52 52 52.6 57 66 80 90	Survey Survey 2Evation Notes 37.79 LPIN 37.65 35.73 35.83 36.46 36.39 36.24 36.24 35.57 34.43 LEW 32.6 TW 32.6 TW 32.6 TW 32.6 TW 32.75 33.06 33.33 34.41 REW 35.25 36.11 BKF 36.17 36.07	2008 Station 0.00 12.00 38.87 42.91 46.03 49.94 53.48 56.17 61.09 70.47	8 Survey 2kevation Notes 37.79 36.02 36.45 35.76 34.92 32.08 33.91 34.38 34.94 35.45 35.45 35.99	20 Station	009 Survey	Station	2010 Survey	Notes	Station	2011 Survey	2012 Survey		Photo of C	ross-Section	#7 - Looking	Upstream		
Area 31.22 30.00 Width 22.54 26.80 Mean Depth 1.39 1.10		100	JU.20 KPIN												AsBuilt	2008	2009	2010	2011	2012
W/D 16.22 23.90														Width Mean Depth Max Depth	31.22 22.54 1.39 3.50	30.00 26.80 1.10 4.20	2007	2010	2011	2012

Material	Size Range (mm)	Count
silt/clay	0 - 0.062	48
very fine sand	0.062 - 0.125	22
fine sand	0.125 - 0.25	16
medium sand	0.25 - 0.5	9
coarse sand	0.5 - 1	5
very coarse sand	1 - 2	2
very fine gravel	2 - 4	1
fine gravel	4 - 6	0
fine gravel	6 - 8	1
medium gravel	8 - 11	0
medium gravel	11 - 16	0
coarse gravel	16 - 22	
coarse gravel	22 - 32	
very coarse gravel	32 - 45	
very coarse gravel	45 - 64	
small cobble	64 - 90	
medium cobble	90 - 128	
large cobble	128 - 180	
very large cobble	180 - 256	
small boulder	256 - 362	
small boulder	362 - 512	
medium boulder	512 - 1024	
large boulder	1024 - 2048	
very large boulder	2048 - 4096	
	total particle count:	104
bedrock		
detritus/wood		
artificial		
	total count:	104
Note: Cross Sect	ion 1	

Cross Section 1 Pebble Count

Size (mm)		Size Distrib	ution		Туре
D16	0.062	mean	0.131757	silt/clay	0.461538
D35	0.062	dispersion	2.564516	sand	0.519231
D50	0.07	skewness	0.339452	gravel	0.019231
D65	0.12			cobble	0
D84	0.28			boulder	0
D95	0.85				

B.8 Pebble Count Distribution

Material	Size Ran	ge (mm)	Count
silt/clay	0	- 0.062	36
very fine sand	0.062	- 0.125	9
fine sand	0.125	- 0.25	10
medium sand	0.25	- 0.5	8
coarse sand	0.5	- 1	13
very coarse sand	1	- 2	12
very fine gravel	2	- 4	8
fine gravel	4	- 6	0
fine gravel	6	- 8	2
medium gravel	8	- 11	1
medium gravel	11	- 16	
coarse gravel	16	- 22	1
coarse gravel	22	- 32	
very coarse gravel	32	- 45	
very coarse gravel	45	- 64	
small cobble	64	- 90	
medium cobble	90	- 128	
large cobble	128	- 180	
very large cobble	180	- 256	
small boulder	256	- 362	
small boulder	362	- 512	
medium boulder	512	- 1024	
large boulder	1024	- 2048	
very large boulder	2048	- 4096	
	total pa	rticle count:	100
	-		
bedrock			
clay hardpan			
detritus/wood			
artificial			
		total count:	100
Note: Cross Sect	ion 2		

Cross Section 2 Pebble Count

Size (mm)		Size Distribu	ution	Туре	
D16	0.062	mean	0.31496	silt/clay	0.36
D35	0.062	dispersion	5.896057	sand	0.52
D50	0.18	skewness	0.204504	gravel	0.12
D65	0.56			cobble	0
D84	1.6			boulder	0
D95	3.7				

Material	Size Ran	ge (mm)	Count
silt/clay	0	- 0.062	29
very fine sand	0.062	- 0.125	33
fine sand	0.125	- 0.25	7
medium sand	0.25	- 0.5	11
coarse sand	0.5	- 1	1
very coarse sand	1	- 2	6
very fine gravel	2	- 4	3
fine gravel	4	- 6	0
fine gravel	6	- 8	3
medium gravel	8	- 11	4
medium gravel	11	- 16	1
coarse gravel	16	- 22	
coarse gravel	22	- 32	1
very coarse gravel	32	- 45	
very coarse gravel	45	- 64	
small cobble	64	- 90	
medium cobble	90	- 128	
large cobble	128	- 180	
very large cobble	180	- 256	
small boulder	256	- 362	
small boulder	362	- 512	
medium boulder	512	- 1024	
large boulder	1024	- 2048	
very large boulder	2048	- 4096	
	total pa	rticle count:	99
bedrock			
clay hardpan			
detritus/wood			
artificial			
		total count:	99
Note: Cross Sect	ion 3		

Cross Section 3 Pebble Count

Size (mm)		Size Distribu	ution	-	Туре
D16	0.062	mean	0.283901	silt/clay	0.292929
D35	0.07	dispersion	7.545027	sand	0.585859
D50	0.096	skewness	0.409622	gravel	0.121212
D65	0.16			cobble	0
D84	1.3			boulder	0
D95	8.7				

Material	Size Range (mm)	Count
silt/clay	0 - 0.062	22
very fine sand	0.062 - 0.125	37
fine sand	0.125 - 0.25	19
medium sand	0.25 - 0.5	11
coarse sand	0.5 - 1	9
very coarse sand	1 - 2	1
very fine gravel	2 - 4	2
fine gravel	4 - 6	0
fine gravel	6 - 8	1
medium gravel	8 - 11	0
medium gravel	11 - 16	1
coarse gravel	16 - 22	0
coarse gravel	22 - 32	1
very coarse gravel	32 - 45	
very coarse gravel	45 - 64	
small cobble	64 - 90	
medium cobble	90 - 128	
large cobble	128 - 180	
very large cobble	180 - 256	
small boulder	256 - 362	
small boulder	362 - 512	
medium boulder	512 - 1024	
large boulder	1024 - 2048	
very large boulder	2048 - 4096	
	total particle count:	104
bedrock		
clay hardpan		
detritus/wood		
artificial		
	total count:	104
Note: Cross Sect	ion 4	

Cross Section 4 Pebble Count

Size (mm)		Size Distribution		Туре			
D16	0.062	mean	0.2		silt/clay	21%	
D35	0.081	dispersion	2.9		sand	74%	
D50	0.11	skewness	0.20		gravel	5%	
D65	0.17				cobble	0%	
D84	0.45				boulder	0%	
D95	1.7						

Material	Size Ran	ge (mm)	Count
silt/clay	0	- 0.062	19
very fine sand	0.062	- 0.125	44
fine sand	0.125	- 0.25	11
medium sand	0.25	- 0.5	13
coarse sand	0.5	- 1	1
very coarse sand	1	- 2	7
very fine gravel	2	- 4	3
fine gravel	4	- 6	0
fine gravel	6	- 8	2
medium gravel	8	- 11	
medium gravel	11	- 16	
coarse gravel	16	- 22	
coarse gravel	22	- 32	
very coarse gravel	32	- 45	
very coarse gravel	45	- 64	
small cobble	64	- 90	
medium cobble	90	- 128	
large cobble	128	- 180	
very large cobble	180	- 256	
small boulder	256	- 362	
small boulder	362	- 512	
medium boulder	512	- 1024	
large boulder	1024	- 2048	
very large boulder	2048	- 4096	
	total pa	rticle count:	100
bedrock			
clay hardpan			
detritus/wood			
artificial			
		total count:	100
Note: Cross Sect	ion 5 🔜		

Cross Section 5 Pebble Count

Size (mm)	Size Distrib	ution	Т	уре
D16	0.062	mean	0.163279	silt/clay	0.19
D35	0.08	dispersion	2.956452	sand	0.76
D50	0.1	skewness	0.232177	gravel	0.05
D65	0.14			cobble	0
D84	0.43			boulder	0
D95	2				

Material	Size Ran	ge (mm)	Count
silt/clay	0	- 0.062	8
very fine sand	0.062	- 0.125	5
fine sand	0.125	- 0.25	6
medium sand	0.25	- 0.5	17
coarse sand	0.5	- 1	33
very coarse sand	1	- 2	21
very fine gravel	2	- 4	5
fine gravel	4	- 6	3
fine gravel	6	- 8	2
medium gravel	8	- 11	
medium gravel	11	- 16	
coarse gravel	16	- 22	
coarse gravel	22	- 32	
very coarse gravel	32	- 45	
very coarse gravel	45	- 64	
small cobble	64	- 90	
medium cobble	90	- 128	
large cobble	128	- 180	
very large cobble	180	- 256	
small boulder	256	- 362	
small boulder	362	- 512	
medium boulder	512	- 1024	
large boulder	1024	- 2048	
very large boulder	2048	- 4096	
	total pa	rticle count:	100
bedrock			
clay hardpan			
detritus/wood			
artificial			
		total count:	100
_			
Note: Cross Sect	ion 6		

Cross Section 6 Pebble Count

Size (mm)		Size Dis	Size Distribution		Туре	
D16	0.18	mean	0.5	silt/clay	8%	
D35	0.48	dispersion	3.1	sand	82%	
D50	0.67	skewness	-0.10	gravel	10%	
D65	0.92			cobble	0%	
D84	1.6			boulder	0%	
D95	4					

Material	Size Range (mm)	Count
silt/clay	0 - 0.062	51
very fine sand	0.062 - 0.125	20
fine sand	0.125 - 0.25	5
medium sand	0.25 - 0.5	9
coarse sand	0.5 - 1	0
very coarse sand	1 - 2	7
very fine gravel	2 - 4	5
fine gravel	4 - 6	1
fine gravel	6 - 8	2
medium gravel	8 - 11	
medium gravel	11 - 16	1
coarse gravel	16 - 22	
coarse gravel	22 - 32	
very coarse gravel	32 - 45	
very coarse gravel	45 - 64	
small cobble	64 - 90	
medium cobble	90 - 128	
large cobble	128 - 180	
very large cobble	180 - 256	
small boulder	256 - 362	
small boulder	362 - 512	
medium boulder	512 - 1024	
large boulder	1024 - 2048	
very large boulder	2048 - 4096	
	total particle count:	101
	-	
bedrock		
clay hardpan		
detritus/wood		
artificial		
	total count:	101
Note: Cross Sect	ion 7	

Cross Section 7 Pebble Count

Size (mm)		Size Distrib	ution		Туре
D16	0.062	mean	0.174299	silt/clay	0.50495
D35	0.062	dispersion	4.451613	sand	0.405941
D50	0.062	skewness	0.473763	gravel	0.089109
D65	0.1			cobble	0
D84	0.49			boulder	0
D95	3.5				

Material	Size Range (mm)	Count
silt/clay	0 - 0.062	39
very fine sand	0.062 - 0.125	17
fine sand	0.125 - 0.25	13
medium sand	0.25 - 0.5	3
coarse sand	0.5 - 1	11
very coarse sand	1 - 2	0
very fine gravel	2 - 4	0
fine gravel	4 - 6	5
fine gravel	6 - 8	4
medium gravel	8 - 11	7
medium gravel	11 - 16	1
coarse gravel	16 - 22	
coarse gravel	22 - 32	1
very coarse gravel	32 - 45	
very coarse gravel	45 - 64	
small cobble	64 - 90	
medium cobble	90 - 128	
large cobble	128 - 180	
very large cobble	180 - 256	
small boulder	256 - 362	
small boulder	362 - 512	
medium boulder	512 - 1024	
large boulder	1024 - 2048	
very large boulder	2048 - 4096	
	total particle count:	101
bedrock		
clay hardpan		
detritus/wood		
artificial		
	total count:	101
Note: Cross Secti	ion 8	

Cross Section 8 Pebble Count

Size (mm)		Size Distribu	ution		Туре
D16	0.062	mean	0.534041	silt/clay	0.386139
D35	0.062	dispersion	23.80645	sand	0.435644
D50	0.1	skewness	0.532003	gravel	0.178218
D65	0.21			cobble	0
D84	4.6			boulder	0
D95	9.6				

Material	Size Range (mm)	Count
silt/clay	0 - 0.062	13
very fine sand	0.062 - 0.125	5
fine sand	0.125 - 0.25	2
medium sand	0.25 - 0.5	2
coarse sand	0.5 - 1	12
very coarse sand	1 - 2	22
very fine gravel	2 - 4	29
fine gravel	4 - 6	4
fine gravel	6 - 8	3
medium gravel	8 - 11	7
medium gravel	11 - 16	1
coarse gravel	16 - 22	
coarse gravel	22 - 32	
very coarse gravel	32 - 45	
very coarse gravel	45 - 64	
small cobble	64 - 90	
medium cobble	90 - 128	
large cobble	128 - 180	
very large cobble	180 - 256	
small boulder	256 - 362	
small boulder	362 - 512	
medium boulder	512 - 1024	
large boulder	1024 - 2048	
very large boulder	2048 - 4096	
	total particle count:	100
clay hardpan		
artificial		
	total count:	100
Note: Cross Sect	ion 9	

Cross Section 9 Pebble Count

Size (mm)	Size Dist	ribution	т	уре
D16	0.094	mean	0.6	silt/clay	13%
D35	1	dispersion	10.2	sand	43%
D50	1.7	skewness	-0.35	gravel	44%
D65	2.5			cobble	0%
D84	3.9			boulder	0%
D95	9.2				

Material	Size Ran	ge (mm)	Count
silt/clay	0	- 0.062	9
very fine sand	0.062	- 0.125	5
fine sand	0.125	- 0.25	2
medium sand	0.25	- 0.5	4
coarse sand	0.5	- 1	13
very coarse sand	1	- 2	17
very fine gravel	2	- 4	26
fine gravel	4	- 6	11
fine gravel	6	- 8	6
medium gravel	8	- 11	4
medium gravel	11	- 16	3
coarse gravel	16	- 22	
coarse gravel	22	- 32	
very coarse gravel	32	- 45	
very coarse gravel	45	- 64	
small cobble	64	- 90	
medium cobble	90	- 128	
large cobble	128	- 180	
very large cobble	180	- 256	
small boulder	256	- 362	
small boulder	362	- 512	
medium boulder	512	- 1024	
large boulder	1024	- 2048	
very large boulder	2048	- 4096	
	total pa	rticle count:	100
bedrock			
clay hardpan			
detritus/wood			
artificial			
		total count:	100
Note: Cross Sect	ion 10		

Cross Section 10 Pebble Count

100%

90%

80% 70%

60% 50%

40% 30% 20% 10% 0%

0.01

0.1

Size (mm) D16 D35 D50

D65

D84

D95

percent finer than

				- 20 numbe
<u> </u>				15 fparticles
				- 5
1 nart	10 icle size (mm)	100	1000	0 10000
	Size Distributi			уре
0.25	mean 1	161895	silt/clay	0.09

30

25

	Size Distribution		Туре		
0.25	mean 1.161895	silt/clay	0.09		
1.1	dispersion 5.35	sand	0.41		
2	skewness -0.20418	gravel	0.5		
3		cobble	0		
5.4		boulder	0		
9.4					

Material	Size Ran	ge (mm)	Count
silt/clay	0	- 0.062	5
very fine sand	0.062	- 0.125	5
fine sand	0.125	- 0.25	7
medium sand	0.25	- 0.5	22
coarse sand	0.5	- 1	18
very coarse sand	1	- 2	23
very fine gravel	2	- 4	9
fine gravel	4	- 6	8
fine gravel	6	- 8	2
medium gravel	8	- 11	1
medium gravel	11	- 16	0
coarse gravel	16	- 22	
coarse gravel	22	- 32	
very coarse gravel	32	- 45	
very coarse gravel	45	- 64	
small cobble	64	- 90	
medium cobble	90	- 128	
large cobble	128	- 180	
very large cobble	180	- 256	
small boulder	256	- 362	
small boulder	362	- 512	
medium boulder	512	- 1024	
large boulder	1024	- 2048	
very large boulder	2048	- 4096	
	total pa	rticle count:	100
clay hardpan			
detritus/wood			
artificial			
		total count:	100
Note: Cross Sect	ion 11		

Cross Section 11 Pebble Count

Size (mm)		Size Distrib	ution	т	уре
D16	0.23	mean	0.788036	silt/clay	0.05
D35	0.44	dispersion	3.42849	sand	0.75
D50	0.76	skewness	0.015211	gravel	0.2
D65	1.3			cobble	0
D84	2.7			boulder	0
D95	5.4				

Material	Size Range (mm)	Count
silt/clay	0 - 0.062	11
very fine sand	0.062 - 0.125	12
fine sand	0.125 - 0.25	3
medium sand	0.25 - 0.5	11
coarse sand	0.5 - 1	26
very coarse sand	1 - 2	17
very fine gravel	2 - 4	8
fine gravel	4 - 6	8
fine gravel	6 - 8	1
medium gravel	8 - 11	2
medium gravel	11 - 16	1
coarse gravel	16 - 22	
coarse gravel	22 - 32	
very coarse gravel	32 - 45	
very coarse gravel	45 - 64	
small cobble	64 - 90	
medium cobble	90 - 128	
large cobble	128 - 180	
very large cobble	180 - 256	
small boulder	256 - 362	
small boulder	362 - 512	
medium boulder	512 - 1024	
large boulder	1024 - 2048	
very large boulder	2048 - 4096	
	total particle count:	100
bedrock		
clay hardpan		
detritus/wood		
artificial		
	total count:	100
Note: Cross Sect	ion 12	

Size (mm)		Size Distrib	ution	т	уре
D16	0.083	mean	0.482079	silt/clay	0.11
D35	0.44	dispersion	6.248939	sand	0.69
D50	0.71	skewness	-0.13602	gravel	0.2
D65	1.1			cobble	0
D84	2.8			boulder	0
D95	5.7				

Cross Section 12 Pebble Count

Material	Size Range (mm)	Count
silt/clay	0 - 0.062	0
very fine sand	0.062 - 0.125	0
fine sand	0.125 - 0.25	7
medium sand	0.25 - 0.5	8
coarse sand	0.5 - 1	4
very coarse sand	1 - 2	29
very fine gravel	2 - 4	31
fine gravel	4 - 6	14
fine gravel	6 - 8	2
medium gravel	8 - 11	3
medium gravel	11 - 16	0
coarse gravel	16 - 22	2
coarse gravel	22 - 32	
very coarse gravel	32 - 45	
very coarse gravel	45 - 64	
small cobble	64 - 90	
medium cobble	90 - 128	
large cobble	128 - 180	
very large cobble	180 - 256	
small boulder	256 - 362	
small boulder	362 - 512	
medium boulder	512 - 1024	
large boulder	1024 - 2048	
very large boulder	2048 - 4096	
	total particle count:	100
bedrock		
clay hardpan		
detritus/wood		
artificial		
	total count:	100
Note: Cross Sect	ion 13	

Cross Section 13 Pepple Count

Size (mm)	Size Distrib	ution	Ту	ре
D16	0.59	mean	1.647422	silt/clay	0
D35	1.5	dispersion	2.874899	sand	0.48
D50	2.1	skewness	-0.11162	gravel	0.52
D65	2.9			cobble	0
D84	4.6			boulder	0
D95	8				

Appendix C. Wetland Raw Data

Wetlands were not restored as part of this project

APPENDIX D

Current Conditions Plan View Reach 1

East Tarboro Canal Stream Restoration Project EEP No. 123 Edgecombe County, North Carolina

Legend

----- Stream Thalweg

Cross Section

Vegetation Monitoring Counts

Less Than 320 Stems per Acre More Than 320 Stems per Acre

November 2008

Current Conditions Plan View Reach 2

East Tarboro Canal Stream Restoration Project EEP No. 123 Edgecombe County, North Carolina

Legend

Cross Section

Vegetation Monitoring Counts

Less Than 320 Stems per Acre

